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Abstract: 
Wave scattering by a finite floating elastic plate connected with mooring lines at its end 
and with the presence of a wall is analyzed in detail based on the linearized theory of 
water waves. The solution of the physical problem is obtained using eigenfunction 
expansion method and by the application of orthogonal mode-coupling relation. The 
hydroelastic behaviour of the floating elastic plate is investigated by analyzing the effect 
of the stiffness of the mooring lines on the reflection and transmission characteristics of 
the gravity waves. The vertical displacement response of the elastic plate are computed 
and analyzed to understand the effect of mooring on the wave motion below the plate. It 
is observed that with the increase in the stiffness parameters of the mooring lines the 
vertical deflections of the floating elastic plate is reduced and with the increase in the 
distance of the end wall the vertical deflection within the floating elastic plate and the 
end wall increases. This suggests that the deflection in the transmitted region can be 
reduced due to the presence of moored floating elastic plate. 
Keywords: 
Elastic plate – End wall – Mooring lines – Eigenfunction expansion – Amplification 
factor 
  
1. Introduction 
In recent decades, the study on the wave absorption by floating structure near the 
harbours and narrow channels has gained considerable importance. These floating 
structures near to the coasts are very important for the reduction of wave height. There 
has been a lot of work done on the hydroelastic analysis of floating structures by 
KASHIWAGI (2000), ANDRIANOV & HERMANS (2003) and many other 
researchers. However, very little work was reported on the wave interaction with 
floating structures in the presence of an end wall. WU et al. (1998) analyzed the wave 
reflection by a vertical wall with a horizontal submerged porous plate using 
eigenfunction expansion method. It is observed that in the region close to the wall, there 
complicated process of wave transformation occur, it includes wave refraction and 
reflection and leads to wave trapping. In order to prevent the floating structures from 
being moved away by drift forces, the floating structures are always connected with the 
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mooring lines. REN & WANG (1994) investigated the behaviour of a flexible, porous, 
floating breakwater connected by mooring lines kept under tension by small buoyancy 
chamber at the tip. It is observed that the hydrodynamic forces and the reflection 
coefficient increases with the increase in the mooring line stiffness. 
KHABAKHPASHEVA & KOROBKIN (2002) analyzed the hydroelastic behaviour of 
the compound floating plates under the influence of surface waves using two different 
physical approaches to reduce the vibration of the floating structures. In their study, an 
auxiliary spring-and-mass system was added to reduce the vibration of the main 
structure.  
In the present study, the scattering of surface water waves by a floating elastic plate 
connected by mooring lines is investigated in the presence of end wall in water of finite 
depth. The eigenfunction expansion method is used in conjunction with the application 
of the orthogonal mode coupling relation to obtain the solution for the moored floating 
elastic plate in the presence of end wall. The effect of the stiffness of the mooring lines 
on the hydroelastic behavior is investigated by analyzing the amplification factor and 
plate deflection due to the presence of the end wall. 
 
2. Mathematical Formulation 
The problem is analyzed in the two dimensional Cartesian co-ordinate system with the 
x -axis being taken as horizontal and the y -axis being vertically downward positive 
with the fluid occupying the region  and 0x y h       as in figure 1. 
  

 

Figure 1. Schematic diagram for floating elastic plate connected with mooring lines. 

The elastic plate is modelled under the assumptions of Euler-Bernoulli beam equation. 
Assuming that the fluid is inviscid, incompressible and the motion is irrotational and 
simple harmonic in time with angular frequency  , the velocity potential  , ,j x y t  
and surface elevation  ,j x t  are expressed in the form     , , Re , i t

j jx y t x y e     
and     , Re i t

j jx t x e    where Re denotes the real part. The spatial velocity 
potential  ,j x y  for 1, 2,3,j   satisfies the governing Laplace equation in the fluid 
region is given by: 

 2 , 0  on  ( ) ,  0 .  j x y L a x y h          (1) 

In the open water region the free surface boundary condition is of the form: 
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   0,   on  ( ), 0, ,   0,jy j x L a a y           (2) 

where 2 g   and 1,3j  . Combining the linearized kinematic condition and Euler-
Bernoulli beam equation in the presence of compressive force, the linearized plate 
covered boundary condition is given by: 

     4 2
2 21 , , 0,   on  0,   0,x x yD Q x y K x y a x y            (3) 

where  2 ,w sD EI g m    2 ,w sQ M g m    2 2 ,w w sK g m    
,s pm d  3 2[12(1 )]EI Ed    is the flexural rigidity of the plate, E  is the Young’s 

modulus, M  is the compressive force,   is the Poisson’s ratio, w  is the density of 
water, p is the density of the plate, g is the acceleration due to gravity and d is the 
draft of the elastic plate. The no flow condition at the rigid bottom for 1,2,3j   is of 
the form: 

0   at .jy y h    (4) 

Due to the presence of wall the boundary condition at  x L a    is given by: 

 3 0   at  ,    0 .x x L a y h        (5) 

In addition, across the interface between the plates and the free water surface, the 
continuity of vertical velocity and pressure yields: 

     1, ,jx j xx y x y    and      1, ,j jx y x y    at 0, ,   0 .x a y h     (6) 

Assuming that the plates are connected by mooring lines with stiffness 1q and 2 ,q at the 
edges 0,x a  , the bending moment and shear force is related by the relation: 

   2 2, ,yxxx j yEI x y q x y     and  2 , 0   for   1, 2.yxxEI x y j      (7) 

It may be noted that if the stiffness constant 0jq  , then the floating elastic plate 

behaves as a plate with free edge. 
 
3. Method of solution 
Using the expansion formulae for wave structure interaction problems, the velocity 
potentials in each of the regions is given by: 

       

         

     

10 10 1

2 2 2 2

1 0 10 1
1

2 2 2
0, 1

3 0 30 30 3

,                               for  0,

, +  for ( ,0), (8)
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where ,  0,1, 2....nR n  , ,  0, , ,1, 2....n nA B n I II  and ,  0,1, 2....nT n   are the unknown 

constants to be determined. The eigenfunctions  jnf y  for 1,2,3j   are given by: 
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where jnk  for 0, ,n I II  are the eigenvalues and satisfies the dispersion relation 
tanh 0  for  1,3,kn jnk k h j     (10a) 

 4 2 1 tanh 0   for  2,jn jn jn jnDk Qk k k h K j      (10b) 

with jn jnk i  for 1,2....n   In Eq. (10a) the dispersion relation has one real root 0jk  
and infinite numbers of purely imaginary roots jn  for 1, 2....n   In Eq. (10b) the 
dispersion relation has one real root 20k  and four complex roots 2nk  for , , ,n I II III IV  
of the form .i    In addition, there are infinite numbers of purely imaginary roots 

2n  for 1, 2....n   It may be noted that the eigenfunctions  jnf y  for 1,3j   and 

 jnf y  for 2j   satisfy the orthogonality relation as given by: 

1,3

0    for   ,
,

 for   ,jm jn j
n

m n
f f

C m n


   

   and    
2

0    for   ,
,

 for   ,jm jn j
n

m n
f f

C m n


   

 (11) 

with respect to the orthogonal mode-coupling relation as defined by: 

1,3
0

, ,
h

jm jn jm jnj
f f f f dy


   (12a) 
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jn jn
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k h k h
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with nC  and nC  for 1, 2,...n   are obtained by substituting jn jnk i .  
In order to determine the unknown coefficients, the mode-coupling relation (11) is 
applied on the velocity potential and the eigenfunction along with the continuity of 
velocity and pressure across the vertical interface 0, ,  0x a y h     and the moored 
edge condition as in Eq. (7) to obtain a system of  4 12N   linear algebraic equation 
for the determination of  4 12N   unknown constants. Once, the unknown constants 

0R and 0T  are determined, the reflection coefficient and the amplification factor are 
obtained which is given by 0rK R  and 0tK T .  
 
4. Results and discussion 
The numerical computations are carried for various cases of stiffness of mooring lines 
considering / 0.9p w   , 0.3   and 29.8 msg  for different values of the plate 
length a , plate thickness d , distance of plate from the wall L  and water depth h . In 
figure 2(a) the amplification factor tK  is plotted versus wave period for different values 
of plate length a  with h=10.0 m, L=100.0 m, d=0.25 m considering the mooring 
stiffness 3 -1

1= 10  Nmq  and 3 -1
2 = 10  Nm .q  It is observed that changing the plate length 

amplification factor sharply increases for certain values of the wave period. In figure 
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2(b), the amplification factor tK  is plotted versus wave period for different values of 
stiffness of the mooing lines 1q  and 2q  with a=100.0 m, L=100.0 m, d=0.25 m and 
h=10.0 m. In this case it is observed that the resonating pattern in the amplification 
factor is higher for higher values of the stiffness constant and for short wave period. 
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Figure 2. Amplification factor tK  versus wave period for different values of (a) plate 
length a  and (b) mooing lines 1q  and 2q . 
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Figure 3. Vertical deflection j  versus distance x  for different values of (a) water 
depth h  and (b) distance from the wall L. 

 
In figure 3(a), the vertical deflection j  is plotted versus distance x  for different values 
of water depth h  with a=100.0 m, L=100.0 m, d=0.25 m, Tp=7.5 s considering the 
stiffness constants 3 -1

1= 10  Nmq  and 3 -1
2 = 10  Nm .q  The vertical deflection in each of 

the three region is observed to be decreasing with the increase in the water depth. This 
shows that more waves get transmitted below the plate due to the increase in the water 
depth. In figure 3(b), the vertical deflection j  is plotted versus distance x  for different 
values of distance of the plate from the wall L  with a=100.0 m, h=100.0 m, d=0.25 m, 
Tp=7.5 s considering the stiffness constants 3 -1

1= 10  Nmq  and 3 -1
2 = 10  Nm .q  It is 

observed that the vertical deflection keeps on increasing with the increase in the 
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distance of the plate from the wall. This is due to the fact that for smaller L the wave 
reflection is higher and as a result the vertical deflection is reduced but with the increase 
in distance of the plate from the wall the wave reflection decreases and as a result 
vertical deflection increases. In both figures 3(a,b), it is seen that near to the edges of 
the plate x=0 and x=-100, the plate deflection is observed to be zero whereas in the open 
water region, at the edges it is observed to have jumps or values different from zero. 
This is due to the application of moored edge condition for the elastic plate and the 
continuity of velocity and pressure at the edges x=0 and x=-100. 
 
5. Conclusions 
An hydroelastic analysis of a moored floating elastic plate in the presence of an end 
wall is performed in water of finite depth. The detailed analysis of the amplification 
factor and the vertical deflections are presented for various water depth and plate length. 
It is observed that the presence of mooring lines at the end of the floating elastic plate 
reduces the deflection of the floating elastic plate. The presence of an end wall has a 
great impact on the outgoing wave deflection. It is observed that as the distance of end 
wall from the floating elastic plate is increased, the deflection between the floating 
elastic plate and the end wall is significantly reduced. The present study will be helpful 
to the designers to understand the wave impact on a floating structure in the presence of 
mooring lines and end wall.  
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